Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available July 18, 2026
- 
            Free, publicly-accessible full text available July 18, 2026
- 
            Free, publicly-accessible full text available July 18, 2026
- 
            This paper explores the potential for cost-effectively developing generalizable and scalable machine-learning-based regression models for predicting the approximate execution time of an HPC application given its input data and parameters. This work examines: (a) to what extent models can be trained on scaled-down datasets on commodity environments and adapted to production environments, (b) to what extent models built for specific applications can generalize to other applications within a family, and (c) how the most appropriate model may change based on the type of data and its mix. As part of this work, we also describe and show the use of an automatable pipeline for generating the necessary training data and building the model. CCS Concepts: • Software and its engineering → Designing software; • Computing methodologies → Cost-sensitive learning. Additional Key Words and Phrases: automated data generation, ML, execution time, model scalability, model transferabilitmore » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available